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Theoretical predictions for the coagulation rate induced by turbulent shear have often
been based on the hypothesis that the turbulent velocity gradient is persistent (Saffman
& Turner 1956) and that hydrodynamic and interparticle interactions (van der Waals
attraction and electrostatic double-layer repulsion) between colloidal particles can be
neglected. In the present work we consider the effects of interparticle forces on the
turbulent coagulation rate, and we explore the response of the coagulation rate to
changes in the Lagrangian velocity gradient correlation time (i.e. the characteristic
evolution time for the velocity gradient in a reference frame following the fluid
motion). Stokes equations of motion apply to the relative motion of the particles whose
radii are much smaller than the lengthscales of turbulence (i.e. small particle Reynolds
numbers). We express the fluid motion in the vicinity of a pair of particles as a locally
linear flow with a temporally varying velocity gradient. The fluctuating velocity
gradient is assumed to be isotropic and Gaussian with statistics taken from published
direct numerical simulations of turbulence (DNS). Numerical calculations of particle
trajectories are used to determine the rate of turbulent coagulation in the presence and
absence of particle interactions. Results from the numerical simulations correctly
reproduce calculated coagulation rates for the asymptotic limits of small and large
total strain where total strain is a term used to describe the product of the characteristic
strain rate and its correlation time. Recent DNS indicate that the correlation times for
the fluctuating strain and rotation rate are of the same order as the Kolmogorov time
(Pope 1990), suggesting theories that assume either small or large total strain may
poorly approximate the turbulent coagulation rate. Indeed, simulations for isotropic
random flows with intermediate total strain indicate that the coagulation rate in
turbulence is significantly different from the analytical limits for large and small total
strain. The turbulent coagulation rate constant for non-interacting monodisperse
particles scaled with the Kolmogorov time and the particle radius is 8.62³0.02,
whereas the commonly used model of Saffman & Turner (1956) predicts a value of
10.35 for non-rotational flows in the limit of persistent turbulent velocity gradients.
Additional simulations incorporating hydrodynamic interactions and van der Waals
attraction were used to estimate the actual rate of particle coagulation. For typical
values of these parameters, particle interactions reduced the coagulation rate constant
by at least 50%. In general, the collision efficiency (the ratio of coagulation with
particle interactions to that without) decreased with increasing particle size and
Kolmogorov shear rate.

† Author to whom correspondence should be addressed: 120 Olin Hall, Cornell University, Ithaca,
NY 14853, 607-255-3484, USA; e-mail : don!cheme.cornell. edu.
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1. Introduction

Turbulent-shear-induced coagulation is an important process leading to the
aggregation of colloidal particles in both engineered and environmental processes.
Turbulent mixing is heavily employed in water treatment and the chemical industries
to enhance the aggregation and removal of fine particles. In natural aquatic systems
many pollutants associate strongly with particles and therefore considerable effort has
been focused on understanding the dynamics of particles in natural environments
(O’Melia 1980).

Estuaries serve as an excellent example of natural systems in which particle
aggregation, due to turbulence, controls contaminant transport. Polluted suspended
sediment in river water mixes with sea water in the estuary resulting in destabilization
and the subsequent aggregation of colloidal particles. Large contaminated agglom-
erates form which can readily settle through the water column and deposit onto the
estuarine sediments (Stumm & Morgan 1981).

Given typical estuarine conditions, with turbulent dissipation rates ranging from
0.002 to 0.7 cm# s−$ (Krone 1970) and colloidal particles with radii between 0.5 and
10 µm and a density of 20 g cm−$ (McCave 1984), scaling analysis incorporating
coagulation rate constants summarized by Pearson, Valioulis & List (1984) can be used
to ascertain the relative importance of various coagulation mechanisms. For 5 µm
particles, coagulation rates resulting from Brownian motion are estimated to be
10–2000 times slower than turbulent shear coagulation for turbulent energy dissipation
rates between 0.002 and 0.7 cm# s−$. Turbulent coagulation also dominates over
differential-settling-induced coagulation in which 5 µm particles aggregate with
particles ranging from 4 to 6 µm at low turbulence levels and from 3 to 8 µm particles
at high turbulence levels. Turbulent acceleration can increase the coagulation rate of
particles owing to differences in particle inertia. From the work of Saffman & Turner
(1956), the ratio of coagulation due to shear and particle inertia in a turbulent flow can
be calculated as a function of the particle relaxation time (i.e. the time it takes an
initially stationary particle to accelerate to the fluid velocity), the relative density
difference between the bulk fluid and the particle and the turbulent dissipation rate.
Again, using the parameter estimates typical for estuarine conditions, turbulent shear
coagulation is expected to dominate for similarly sized particles. At low turbulence
levels, the transition from turbulent shear to inertia dominated collisions occurs for
5 µm particles interacting with particles less than 4 µm and greater than 6 µm. Since the
importance of particle inertia decreases with the density difference between the particle
and the fluid, inertia driven coagulation is expected to be less important for more
neutrally buoyant, organic-based colloidal particles. In general, this scaling analysis
suggests that coagulation caused by turbulent shear is likely to control the aggregation
process in estuaries for like-sized colloids with radii greater than 1 µm.

Despite the importance of turbulent coagulation, only a limited number of
theoretical analyses have been attempted and very little experimental work has been
carried out to assess the applicability of existing turbulent coagulation models. In this
paper the issue of analytical model validity is addressed by performing computer
simulations of turbulent shear coagulation. The relative trajectories of particle pairs in
isotropic turbulence are analysed using velocity gradient statistics taken from direct
numerical simulations of turbulence (DNS; Girimaji & Pope 1990). Results from the
simulations are compared with models for turbulent coagulation that are found in the
literature (i.e. Saffman & Turner 1956; Brunk, Koch & Lion 1997).

Although several heuristic models for turbulent coagulation have been proposed
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F 1. Schematic illustrating the coordinate system and boundary conditions for turbulent
coagulation. Two particles with radii a are separated by a distance r. Far from the test sphere,
rU r¢ the pair probability for the particles reaches its bulk value, C#

"
and upon reaching the

collision radius, r¯σ¯ 2a the pair probability of singlet particles is zero.

(Delichatsios & Probstein 1975; Camp & Stein 1943; Casson & Lawler 1990), the
discussion presented here will focus on models that attempt to represent the physics of
turbulent coagulation. The model developed by Saffman & Turner (1956) yields an
expression for the turbulent aggregation rate that is valid in the limit of persistent strain
where the product of the characteristic strain rate and its correlation time (i.e. the total
strain) is large. We have recently investigated the opposite limit where turbulent
transport of coagulating particles can be likened to a pair diffusion process (Brunk et
al. 1997). Evidence from DNS (Pope 1990; Girimaji & Pope 1990) suggests that the
strain rate field for isotropic turbulence is intermediate between these two limits. In the
intermediate regime, analytical expressions for the turbulent coagulation rate are
unattainable ; thus, we simulate numerically the coagulation of particles that are
smaller than the lengthscales of turbulence.

For the analysis that follows, particle diameters are assumed to be smaller than the
Kolmogorov lengthscale (i.e. the lengthscale of the smallest turbulent eddies), but
large enough that the Pe! clet number based on the small scales of turbulence is large and
Brownian motion can be ignored.

Since the smallest scales of turbulence have the highest shear rates (Tennekes &
Lumley 1972), they will dominate the coagulation process. The size and shear rate of
the smallest turbulent eddies are estimated by balancing the turbulent energy flux from
large to small eddies with viscous dissipation. Characterizing the energy flux with the
turbulent dissipation rate, ε, and the viscous dissipation with the kinematic viscosity,
ν, leads to the Kolmogorov estimates for eddy length and velocity gradient :

η¯ 0ν$ε 1"/%, (1.1)

Γη ¯ 0εν1"/#, (1.2)

where η is the Kolmogorov lengthscale and Γη is the Kolmogorov velocity gradient.
In natural aquatic environments, such as an estuary, typical Kolmogorov

lengthscales vary from 1.5 mm to 350 µm (Krone 1970), while turbulence produced in
flocculation tanks used for wastewater treatment might have Kolmogorov lengths as
small as 30 µm (O’Melia 1980). The stipulation that the particles be smaller than the
lengthscales of turbulence is, therefore, applicable to all but the most intense turbulent
flows and the largest colloidal particles.
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Figure 1 shows the standard coagulation problem where calculation of the collision
rate between monodisperse particles is of interest. The coordinate system is placed in
a Lagrangian reference frame that moves with a test particle and relative position
vectors connect the centre of the test sphere and nearby particles. In this description,
the system is assumed to be sufficiently dilute such that only binary (1:1) interactions
occur. The coagulation rate is obtained by calculating the number of two-particle
collisions that occur between the representative test particle at the origin of the
coordinate system and other colloids. Doublet formation is assumed to be irreversible
so that the probability density for pairs of free particles (P) approaches zero at the
excluded volume surface : r¯σ¯ 2a. At large distances from the test sphere (rU¢),
the pair probability of monodisperse particles attains its bulk value, P¯C#

"
, where C

"
is the bulk concentration of singlet particles in the system.

Given the assumption of negligible doublet breakup, the initial rate of doublet
formation in a dilute suspension is :

dC
#

dt
¯kC#

"
, (1.3)

where k is the coagulation kernel or coagulation rate constant and C
#

is the bulk
concentration of doublet particles.

The coagulation kernel, k, given in (1.3), accounts for the various transport
mechanisms leading to particle collision (e.g. turbulent shear, Brownian motion and
differential settling), and the influence of interparticle interactions such as van der
Waals attraction, hydrodynamic interactions and electrostatic double-layer repulsion.
Transport mechanisms and interparticle interactions are usually separated by writing
the coagulation kernel as the quotient of an ideal rate constant, k!, that ignores
interparticle forces and hydrodynamic interactions and a stability factor, W, that
incorporates the effects of these interactions (Russel, Saville & Schowalter 1989).
Equivalently, the rate constant can be described in terms of a collision efficiency,
α¯W−", expressing the fraction of ideal collisions that actually would occur when
interparticle interactions are included. Thus coagulation for monodisperse spherical
particles undergoing irreversible collisions can be represented by:

dC
#

dt
¯αk!C#

"
. (1.4)

The rate expression given by (1.4) assumes there are no particle sources in the system.
A consequence of the assumption that the suspension is dilute is that C

#
and C

"
are

independent of position on lengthscales greater than the particle radius. That is, the
time between collisions is much longer than the local mixing time so that local
fluctuations in the bulk particle concentration can be neglected. We can estimate how
dilute the suspension must be to ignore concentration fluctuations by comparing the
characteristic mixing time to the time over which the particle number density evolves.
The number density evolves on a timescale, τ

c
C 1}k!C

"
. For particles which are small

compared to the lengthscales of turbulence, dimensional analysis shows that k!Cσ$Γη,
where σ is the particle diameter. Thus, τ

c
C 1}Γη φ where φ is the particle volume

fraction. The time to mix over a Kolmogorov lengthscale is ln(η}σ)}Γη if we let the
relative velocity between the two particles be proportional to Γη r, where r is the relative
separation vector between the particles. Mixing at the macroscales of turbulence occurs
over times of the order of L}u« where L is the integral scale of the turbulence and u«
is the integral velocity. The ratio of the Kolmogorov scale to integral scale mixing rates
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is proportional to R"/# ln(η}σ) where R is the turbulent Reynolds number (Tennekes &
Lumley 1972). For all practical purposes, mixing at the large scales is rate limiting.
Comparing the characteristic coagulation timescale, τ

c
to the mixing time at the

macroscales of turbulence gives the criterion: φiR−"/# for the rapid mixing
assumption to be valid. In natural environments, volume fractions are of the order of
10−& or smaller (Stumm & Morgan 1981) ; thus, neglecting local concentration
fluctuations should be valid for many practical systems. If the suspension is sufficiently
concentrated so that mixing limitations on the larger scales are important, the average
coagulation rate can be written as:

dC
#

dt
¯©αk!C#

"
ª, (1.5)

where the brackets indicate an average over the larger eddies with lengthscales much
larger than η. Here C

"
and C

#
would be interpreted as concentrations averaged over a

lengthscale which is large compared to the particle radius, but small compared to the
large eddies. In this situation, we would need a model for the macroscale mixing
process so the nonlinear average in (1.5) could be evaluated. For the remainder of this
paper we assume a well-mixed system.

Asymptotic expressions for k! in turbulence have been obtained in the large and
small total strain limits. Assuming the product of the characteristic strain rate and its
correlation time are large, Saffman & Turner (1956) derive the coagulation rate
constant of non-interacting particles in stationary, homogeneous, isotropic turbulence.
In the neighbourhood of a test particle, they propose that the local turbulent velocity
field can be represented as a pseudosteady linear extensional flow. The particle collision
rate is written as a flux integral over the excluded volume surface area that is simplified
by assuming isotropic and Gaussian velocity gradient statistics. The resulting average
coagulation rate constant in the large strain limit is :

k!¯ ( )

"&
π)"/#Γη σ$. (1.6)

In recent work, the authors extend the analysis of Levich (1962) and calculate the
coagulation rate in the limit of small strain with and without particle interactions
(Brunk et al. 1997). At small total strain, net particle movement is the result of many
uncorrelated velocity field fluctuations; therefore, relative particle movement can be
characterized with a pair diffusivity. This analysis is restricted to small gap widths
where the flow field is a randomly varying isotropic linear flow with Gaussian statistics
and separate rotational and extensional correlation times. Neglecting hydrodynamic
interactions, the pair diffusivity is :

Dt
ij
¯

Γη r#

60 94Γη τ
S

r
i
r
j

r#
(3Γη τ

S
5Γη τ

R
) 0δij®r

i
r
j

r# 1: , (1.7)

where r
i

is the vector connecting the centres of the diffusing particle pair, r is the
magnitude of r

i
, δ

ij
is the identity tensor and τ

S
and τ

R
are the strain and rotation rate

correlation times, respectively.
The turbulent coagulation rate constant is found by solving a steady-state pair

probability equation for the flux of particles diffusing toward a test sphere (Brunk et
al. 1997). In the absence of particle interactions:

k!¯ %

&
π(Γη τ

S
)Γη σ$. (1.8)

This prediction has a functional form similar to the large strain limit determined by
Saffman & Turner (1.6) except for the additional dependence on the total strain, Γη τ

S
.
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It can be further shown that the effects of finite Pe! clet number, hydrodynamic
interactions, and interparticle forces may be easily included in numerical computations
at the small strain limit (Brunk et al. 1997).

Evidence from DNS suggests that the total strain in isotropic turbulence is order
one. Using DNS, Pope and coworkers (Pope 1990; Girimaji & Pope 1990; Yeung &
Pope 1989) investigated one-point, two-time Lagrangian autocorrelation functions of
the strain and rotation rates in homogeneous, isotropic turbulence over Taylor-scale
Reynolds numbers from 38 to 93. [NB By one-point, two-time Lagrangian strain rate
autocorrelation function we mean the covariance of the strain rate at two different
times for the same fluid element. The Taylor-scale Reynolds number is defined as
Rλ ¯ u«λ

T
}νER"/#, where λ

T
¯ ((u«)#}©(¥u

"
}¥x

"
)#ª)"/# is the Taylor scale and u

"
is the

velocity in the x
"
-direction.] At all Reynolds numbers, Pope (1990) found that, whereas

the correlation time for the amplitude of the Lagrangian strain rate scales with the
integral timescale, the strain rate loses directional information in approximately a
Kolmogorov time. This result contradicts the long-standing hypothesis of persistent
strain in turbulence. According to the persistent strain hypothesis (Townsend 1951;
Pope 1990), the local Lagrangian strain rate scales with the integral timescale. In the
context of particle aggregation, this hypothesis forms the basis of Saffman & Turner’s
(1956) analysis and is equivalent to assuming the flow field remains static over a
collision event. Based on the DNS results, it is reasonable to expect that neither the
large nor small total strain asymptotic limits will adequately represent coagulation in
isotropic turbulence. Estimates of the turbulent coagulation rate at moderate strain
and rotation rate correlation times must be determined by simulations before the
regions of validity for the asymptotes can be established. In addition, these calculations
can provide insight into aggregation phenomena in other random flows such as the
flow in porous media.

Recently, several studies have been undertaken into the collisions among particles in
DNS generated isotropic turbulent flows (Sundaram & Collins 1997; Wang, Wexler &
Zhou 1998; Zhou, Wexler & Wang 1998). Wang et al. (1998) investigated collisions of
inertialess particles. Sundaram & Collins (1997) and Zhou et al. (1998) considered
particles with appreciable inertia, i.e. heavy particles suspended in a gas. In the
presence of appreciable particle inertia, the collision rate was found to be much larger
than rates occurring in the inertialess case relevant to liquid–solid suspensions. Owing
to computational limitations, these simulations omitted interparticle interactions.

DNS has also revealed that inertia causes particles whose density is greater than that
of the fluid to accumulate in regions of high local strain and low vorticity (Squires &
Eaton 1991; Wang & Maxey 1993; Sundaram & Collins 1997). The extent of
preferential accumulation depends on the value of the Stokes number (St) based upon
the Kolmogorov scale, which is a ratio of the particle response time, (2ρa#}9µ, where
ρ is the particle density and µ is the fluid viscosity) to the Kolmogorov timescale (1}Γη)
(Sundaram & Collins 1997). Segregation due to inertia is important at intermediate
values of St, whereas at large Stokes numbers the particles are so heavy they are
unresponsive to the turbulent flow field. When StU 0 the particles have no inertia and
they follow the fluid motion and are fully mixed (Squires & Eaton 1991).

The calculations of Squires & Eaton (1991) and Sundaram & Collins (1997) are
primarily concerned with solid particles suspended in air where Stokes numbers are
large. In contrast, this research focuses on computing the coagulation rate for aqueous
colloidal suspensions with no appreciable buoyancy. Only recently have attempts been
made to use DNS to simulate coagulation in the limit of low particle inertia (Zhou et
al. 1998). Zhou et al. simulated particle coagulation in frozen turbulence that was
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generated with a DNS scheme. Their results suggest the Stokes number based on the
Kolmogorov timescale must be less than 0.1 for the collision kernel to be within 10%
of the zero inertia value. Assuming neutrally buoyant particles with a diameter 10%
of η, Stη ! 0.01 suggesting that particle inertia can be neglected and the particles can
be assumed to be distributed homogeneously throughout the turbulent flow. In the
conclusions to this manuscript we compare these DNS studies to our own
investigations.

In the remainder of the paper, we investigate aggregation in turbulent flows for
colloidal particles. In §2, a simulation technique is developed to compute the
coagulation rate for arbitrary strain and rotation rate correlation time. We report on
simulations conducted without the presence of particle interactions for arbitrary total
strain in §3, and compare results for strain rates of practical interest with the
commonly used asymptotic limits. Finally, in §4 we include the influence of
hydrodynamic interactions and van der Waals attractions in the coagulation
simulations. The collision efficiency is computed and the effect of varying the total
strain and the relative magnitude of the van der Waals attraction and the viscous
interaction force is examined.

2. Computer simulation: development and method

To evaluate the usefulness of the large and small strain limiting cases, we developed
a computer simulation of coagulation in a randomly varying flow field with statistics
selected to reproduce those for Gaussian isotropic turbulence. The evolution equation
for the relative motion of a pair of particles in isotropic turbulence is derived here and
the constitutive relations for the fluctuating velocity gradient and interparticle
potential are presented. In the forthcoming analysis, the particle-separation-based
Reynolds number, Re¯Ur}ν (where U is the relative particle velocity and ν is the
kinematic viscosity), is assumed to be small so that Stokes equations apply to the
relative particle motion. In addition, we assume the particle suspension is dilute so that
the particles do not influence the turbulent flow (Sundaram & Collins 1997).
Coagulation is controlled by particle relative motions at small separations where the
velocity field is linear in the separation distance. We show how the fluctuating velocity
gradient can be described in terms of a Fourier series with coefficients and frequencies
chosen randomly to satisfy the constraints of Gaussian isotropic turbulence. The
effects of retarded van der Waals attraction and hydrodynamic interactions are also
considered in the algorithm. Generalization to other spherically symmetric interparticle
potentials can be made in a similar manner.

Neglecting inertia, the evolution of the relative particle separation can be described
as a superposition of the motion driven by the linear flow field and the velocity caused
by a radially acting interparticle potential :

dr
i

dt
¯Γ

ik
(t)r

k
®C

ij
S
jk

r
k
®0 M

ij

6πµa1 ¥φ(r)

¥r
j

, (2.1)

where Γ
ik
(t) is randomly fluctuating velocity gradient tensor, C

ij
(r) is the hydrodynamic

mobility function for two particles in a linear flow field (Batchelor & Green 1972a, b),
S
jk

¯ "

#
(Γ

jk
Γ

kj
) is the strain rate, M

ij
(r)}6πµa is the relevant hydrodynamic mobility

function for two particles experiencing equal and opposite forces (Batchelor 1976) and
φ(r) is the radially acting interparticle potential. The magnitude of the fluctuating
velocity gradient is assumed to be large compared with the mean shear so only the
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fluctuating motions are dynamically important in determining particle movement and
coagulation. Our assumption applies to most flows since the ratio of the mean shear
rate to the Kolmogorov shear rate typically scales like R−"/# (Tennekes & Lumley
1972).

Batchelor & Green (1972a, b) provide an explicit tensor expression for C
ij

in terms
of the particle separation vector and two scalar functions of the relative position and
particle radius ratio, namely:

C
ij
¯A(r)

r
i
r
j

r#
B(r) 0δij®r

i
r
j

r# 1 , (2.2)

where A(r) and B(r) are non-dimensional functions of radial position and radius ratio
that are tabulated by Batchelor & Green (1972a, b) and Kim & Karilla (1991). The
hydrodynamic relative mobility tensor scaled with the Stokes drag has the following
form (Batchelor 1976) :

M
ij
¯

r
i
r
j

r#
G(r)0δij®r

i
r
j

r# 1H(r), (2.3)

where G(r) and H(r) are non-dimensional functions of relative position and particle
radius ratio that are tabulated in Batchelor (1976) and Kim & Karilla (1991).

2.1. Characterization of Γ
ij
(t)

The fluctuating velocity gradient tensor, Γ
ij
(t), is a small-scale quantity of turbulence

with an energy spectrum that peaks in the dissipation subrange of turbulence. Since
directional biases imposed at the large scales are lost during the turbulent energy
cascade process, Kolmogorov’s similarity hypothesis applies and Γ

ik
(t) may be

assumed to be isotropic. For the following analysis, we approximate the probability
distribution function (p.d.f.) of Γ

ik
(t) as Gaussian. It is established that rare events

attributed to internal intermittency lead to the formation of exponential tails on the
velocity derivative p.d.f. (Pope 1996). Since exponential decay is much slower than the
tailing of the standard Gaussian distribution, this leads to higher-order moments, such
as the superskewness (the sixth moment of the velocity gradient), that are orders of
magnitude larger than values predicted from a normal distribution (Pope 1996).
However, experimental evidence shows that the exponential tails of the velocity
gradient distribution contribute negligibly to lower-order statistics such as second
moments.

The analysis of turbulent shear coagulation in the small total strain limits (Saffman
& Turner 1956; Brunk et al. 1997a) depends only on the second moment. Wang et al.
(1998) evaluated the Gaussian flow approximation used in Saffman & Turner’s
expression (1956) for the coagulation rate with DNS at a Taylor microscale Reynolds
number of 24. They found the assumption of Gaussian turbulence increased the
predicted aggregation rate by about 5% (Wang et al. 1998). Since intermittency has a
negligible effect in the two asymptotic limits, it is anticipated that the effects of
intermittency will not strongly influence turbulent coagulation at intermediate total
strains. The effect of intermittency is likely to be even smaller when we include particle
interactions in §4 because the coagulation rate has a much weaker dependence on the
Kolmogorov shear rate. It may, however, be expected that the non-Gaussian nature of
the flow will become more pronounced with increasing Rλ. The approach developed
here could be generalized to allow for a non-Gaussian random velocity gradient field,
but this would require knowledge of the temporal correlations of the higher-order
moments.
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There is one other possible deviation from actual turbulence that our model may
exhibit (assuming we accept the local linearity of the flow): actual turbulence may have
different types of decay for the velocity gradient correlations. Girimaji & Pope (1990)
show that the strain rate tensor and the vorticity vector decay exponentially with
correlation times. They found that the ratio of the correlation times with the
Kolmogorov time was independent of the Taylor-scale Reynolds number (for
simulations from Rλ ¯ 38 to 93). It is conceivable that there is a weak dependence on
Rλ that would become evident if the Reynolds number could be increased substantially,
but at present we have no evidence for this. Scalar measures of the dissipation rate and
the magnitude of the vorticity do have correlation times that decay on the integral and
Kolmogorov times. So the rates of coagulation occurring in different regions of the
flow could be different, but this does not change the way we should calculate individual
coagulation events that occur on the Kolmogorov scales. The simulations by Pope’s
group (Pope 1990; Girimaji & Pope 1990; Yeung & Pope 1989) indicate that regions
of high strain rate or high vorticity magnitude persist, but the directionality of the
strain rate tensor and the vorticity vector change so that the particles’ relative motion
will not be persistent.

Since a joint-normal distribution is assumed for Γ
ik
(t), only the mean and covariance

tensor must be specified to fully define the p.d.f. of Γ
ik
(t). Following the work of

Kraichnan (1970), Γ
ij
(t) is written as a temporal Fourier series with random Fourier

coefficients and frequencies selected from specified p.d.f.s (see below) to reproduce the
two-time Lagrangian statistics of the fluctuating turbulent velocity gradient. As the
number of terms in the Fourier series increases, the velocity gradient field automatically
becomes Gaussian by the Central Limit Theorem.

The fluctuating velocity gradient is written as a random Fourier series for the rate
of strain tensor, S

ik
(t), and the rotation rate tensor, R

ik
(t)¯ "

#
(Γ

ik
®Γ

ki
). The

dependence of Γ
ik
(t) on the strain and rotation rates is made explicit since they evolve

according to different timescales (Girimaji & Pope 1990). The Fourier series
representation of Γ

ik
(t) is :

Γ
ik
(t)¯ 3

N

n="

[Sq n
ik

exp(iπωn
S
t)Rq n

ik
exp(iπωn

R
t)], (2.4)

where N is the number of terms in the Fourier series, i¯ (®1)"/#,Sq n
ik

and Rq n
ik

are
independent Gaussian random variables with zero mean that represent the strain and
rotation components of the turbulent velocity gradient, respectively, and ωn

S
and ωn

R
are

random frequencies chosen from p.d.f.s that reproduce the desired strain and rotation
rate autocorrelation functions, respectively.

Expressions for the covariance of the Fourier coefficients and the p.d.f.s of the
frequencies are developed below. We explicitly derive relations for the strain rate ; the
comparable relations involving the rotation rate can be found analogously. Taking the
symmetric part of (2.4) yields :

S
ik
(t)¯ 3

N

n="

Sq n
ik

exp(®iπωn
S
t). (2.5)

Multiplying (2.5) by S
jl
(tτ) and taking the ensemble average leads to an expression

for the strain rate autocorrelation function:

©S
ik
(0)S

jl
(τ)ª¯- 3

N

n,m="

Sq n
ik

Sq m$
jl

exp(iπωm
S

τ). , (2.6)
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where stationarity has been assumed (i.e. the statistics of the fluctuating velocity field
are independent of the time origin) and the asterisk denotes the complex conjugate.
Next, we assume that the tensors, Sq n

ik
and Sq m

ik
, are independent for n1m and that the

Fourier coefficients and ωm
S

are independent random variables :

©S
ik
(0)S

jl
(τ)ª¯ 3

N

n="

©Sq
ik

Sq $
jl
ª&¢

−¢

exp(iπωn
S
τ)P(ωn

S
) dωn

S
, (2.7)

where P(ωn) is the p.d.f. of ωn. The Fourier transform of (2.7) is :

&(©S
ik
(0)S

jl
(τ)ª)¯ 3

N

n="

©Sq
ik

Sq $
jl
ª&¢

−¢
&¢

−¢

exp(iπωn
S
τ) exp(®iπω

S
τ)P(ωn

S
) dωn

S
dτ.

(2.8)
Orthogonality of the complex exponentials greatly simplifies (2.8) to:

&(©S
ik
(0)S

jl
(τ)ª)¯N©Sq

ik
Sq $
jl
ªP(ω

S
). (2.9)

The autocorrelation function for the strain rate in isotropic turbulence derived in the
Appendix is :

©S
ik
(0)S

jl
(t)ª¯S

ikjl
exp 0®t

τ
s

1 , (2.10)

where S
ikjl

¯©S
ik
(0)S

jl
(0)ª is the covariance of the strain rate given by (A 4). The

exponential decay law given in (2.10) was found to represent the DNS data for the
strain rate autocorrelation function accurately (Girimaji & Pope 1990). Coherent
structures might be expected to give a long-time tail to (2.10), but Pope (1990) did not
observe this for tensors – only for the magnitudes of the velocity gradient. Nonlinear
regression of Girimaji & Pope’s (1990) data based on (2.10) resulted in a strain rate
correlation time, τ

S
¯ 2.3}Γη with r#¯ 99.5%. Similarly, the exponential decay fit

the rotation rate autocorrelation function to yield a rotation rate correlation time,
τ
R

¯ 7.2}Γη with r#¯ 95%. The Fourier transform of (2.10) gives :

&(©S
ik
(0)S

jl
(τ)ª)¯

2τ
S
S
ikjl

1(πω
S
τ
S
)#

. (2.11)

Comparing (2.9) and (2.11), the p.d.f. of ω
S

is chosen to be:

P(ω
S
)¯

τ
S

1(πω
S
τ
S
)#

, (2.12)

such that it satisfies the normalization condition, namely:

&¢

−¢

P(ω
S
) dω

S
¯ 1. (2.13)

The remaining terms in (2.9) and (2.11) specify the covariance of the random Fourier
coefficients for the extensional flow component as :

©Sq
ik

Sq $
jl
ª¯

2S
ikjl

N
. (2.14)

The strain rate autocorrelation function, (2.10), is a real, even function of time, leading
to the constraint that the real and imaginary parts of Sq

ik
are independent. For
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simplicity, the variances of the real and imaginary parts are assumed to be equal. The
restrictions imply that if :
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(2.16)

Similarly, the p.d.f. of ω
R

and the variance of ©R
ik

R
jl
ª can be found. Final results

for the rotational component of the Fourier series may be obtained by replacing S in
equations (2.5)–(2.16) by R.

For each realization of the random flow, the Fourier coefficients defined by (2.4)
were randomly picked from a joint normal distribution with zero mean and a variance
satisfying (2.14)–(2.16). Similarly, the random frequencies for the specified strain and
rotation rate correlation times were determined from the p.d.f.s defined in (2.12).
Uniform and normally distributed random numbers used in describing a realization of
Γ

ik
(t) were chosen using algorithms supplied in the ranlib library from NETLIB

(Brown & Lovato 1996).
The Fourier series included enough terms so that, in the limit of many realizations,

the specified second-order statistics of Γ
ij
(t) were obtained. Figure 2 shows three

components of the velocity gradient autocorrelation coefficient calculated by averaging
2000 realizations of Γ

ij
(t) when N in (2.4) was 200. The solid lines are calculations

derived from DNS for homogeneous isotropic turbulence (see Appendix; Girimaji &
Pope 1990) and the symbols represent results obtained using the Fourier series
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representation. The simulated fluctuating velocity gradient had autocorrelation
functions that agreed quantitatively with the velocity gradient autocorrelation
coefficients obtained from DNS.

2.2. Constituti�e relation for the interparticle potential

A number of physicochemical forces can influence colloidal dynamics including van
der Waals attraction, electrostatic double-layer repulsion and solvation forces (Stumm
& Morgan 1981; Israelachvili 1992). We confine our analysis to destabilized colloidal
systems where van der Waals attraction is the predominant colloidal force ; however,
the technique can be readily extended to include any colloidal force. In many systems,
such as oceans and estuaries, particles are destabilized (Stumm & Morgan 1981) which
means that electrostatic forces are negligible ; therefore, including only van der Waals
attraction in this analysis is not overly restrictive.

A van de Waals attractive potential corrected for retardation was used for the
interparticle potential included in the equation of motion (2.1). Van der Waals
attractions result from induced-dipole}induced-dipole interactions between neigh-
bouring atoms. The pairwise sum of these attractions over a macroscopic body leads
to a significant attractive potential that decays rapidly over distances comparable to
the particle radius (Russel et al. 1989). Owing to the finite propagation speed of
electromagnetic waves, dipole}dipole correlations between interacting atoms become
out of phase at distances greater than the London retardation wavelength, λ, which
further reduces the dispersion forces. In this work λ is set equal to 100 nm (van de Ven
& Mason 1977; Davis 1984) in qualitative agreement with measurements (Suresh &
Walz 1996). Schenkel & Kitchner (1960) provide an analytical approximation for the
retarded van der Waals potential given by:

φ
vdw

¯®
A

H

12(ξ0.885N
L
ξ #)

for ξ! 4}N
L
, (2.17)
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105N$
L
ξ $
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L
, ξi 1. (2.18)

In (2.17) and (2.18), ξ¯ (r®2a)}a is the gap width scaled by the particle radius, A
H

is
the Hamaker constant, and N

L
is the diameter of the two particles scaled by the

London retardation wavelength: N
L
¯ 2πσ}λ. These approximate expressions for

the retarded van der Waals potential are valid in the limit of small separations (i.e. the
lubrication regime). Constraining λi "

#
σ, so that van der Waals attraction decays in

the lubrication regime, leads to the restriction that N
L
j 4π, which is satisfied for all

the particle sizes examined in this paper.

2.3. Scaling

Scaling of (2.1) is accomplished by normalizing the particle separation, r
i
, with the

particle radius, the time with the Kolmogorov time, and the velocity gradient with the
Kolmogorov velocity gradient. Since the van der Waals attraction becomes significant
for gap widths comparable to the London wavelength, the gradient of the potential
scales with A

H
}4λ. The final form of the equation of motion is :
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, (2.19)
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Parameter Interpretation Magnitude

τ
S
Γη, τ

S
Γη Total strain (rotation) 0 to ¢

N
L
¯ 4πa}λ Particle radius to London 10# to 10%

retardation wavelength
N

S
¯ 12πµa$Γη}A

H
Viscous to van der Waals σ¯ 1 µm: 10−$ to 10$

forces σ¯ 100 µm: 10$ to 10*

T 1. Non-dimensional parameters and their typical magnitudes.

where N
s

is defined in table 1 as the ratio of viscous to van der Waals forces.
Hereinafter, scaled variables are used. Table 1 lists the expected magnitudes of the
scaled parameters assuming an aqueous dispersion of 1–100 µm diameter colloidal
particles with Γη ¯ 0.1–1000 s−" and A

H
¯ 10−"*–10−#" J.

3. Turbulent coagulation for non-interacting particles

3.1. Simulation procedure

Simulations at arbitrary total strain and rotation were conducted in the absence of
particle interactions to compare with the asymptotic limits provided by Saffman &
Turner (1956) and Brunk et al. (1997a). The general simulation approach began by
generating a realization of the random linear flow using the Fourier series method
described in §2. The most obvious way to proceed would be to create particles at the
outer simulation boundary such that the constant bulk concentration was maintained.
Numerical integration could then be used to track the positions of the particles so that
their rate of collision with the test sphere (as illustrated in figure 1) could be measured.
However, since most particles in the bulk fluid (at r¯¢) do not collide with the test
sphere in this approach, the efficiency of the numerical calculations would be low.

The efficiency of the computer simulations was greatly improved by running the
simulation backwards in time. Instead of creating particles at r¯ r¢ and calculating
the collision rate with the test particle, the particles were created at r¯σ and the
simulation calculated the particle flow rate through the outer simulation boundary.
Since the conservation equation for non-interacting particles is linear and time
reversible, the flux calculated in the time reversed simulation was equal in magnitude
to that obtained using the conventional boundary conditions shown in figure 1.

In the absence of particle interactions the equation of motion, (2.19), for the particles
reduces to:

dr
i

dt
¯Γ

ij
(t) r

j
, (3.1)

indicating that the particles follow the fluid motion. The only physical parameters that
influence the coagulation dynamics in this case are the total strain and total rotation.
In isotropic turbulence, the ratio of the strain rate to rotation rate is fixed because the
turbulent dissipation rate is partitioned equally between the strain and rotational flow
components ; consequently, the effect of varying this ratio was not considered in the
numerical analysis.

For each turbulent coagulation simulation, a unique realization of the spatially
linear flow was generated using the Fourier series method outlined in §2.1. During each
timestep the simulation checked to see if a particle should be created at the excluded
volume surface. In the absence of interactions, particles follow the fluid motion;
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therefore, the flux of pair probability at the particle surface is proportional to C#

"
(u[n)

when ru[nr" 0 and the flux is zero otherwise. (Here, n is the outward pointing unit
vector normal at the randomly chosen location, and u is the local velocity.) At
locations of high local flux, the probability that a particle from the bulk enters the near
field around the test particle is high, while the probability that a particle is swept into
the simulation domain is low in regions of low volumetric flux. The probability of
creating a particle is therefore proportional to the volumetric flux at the randomly
chosen location:

P
creation

¯®
u[n

(u[n)
max

, (3.2)

where P
creation

is the probability of creating a particle, and (u[n)
max

is the maximum
volumetric flux that occurs at any position on the surface, r¯σ, and at any time
throughout the simulation. In the simulations, the maximum volumetric flux was
estimated as (u[n)

max
Eσ©Γ#

""
ª"/# and then refined by trial and error. The final

estimate for (u[n)
max

was large enough for high shear fluctuations in the velocity
gradient field not to lead to particle creation probabilities greater than 1. To evaluate
(3.2), the simulation selected a random position on r¯σ using the acceptance–rejection
technique developed by Von Neumann (1951) and computed the volumetric flux at the
random location. If the calculated P

creation
was negative, a particle was not created

since the volumetric flux was inward. For positive probabilities, the simulation created
a particle if a uniform random number less than P

creation
was generated.

Although many particles existed within the control volume at any time, only
encounters between a particle and the test sphere were considered. That is, the particles
that were in relative motion around the test sphere passed through one another. In the
physical application, the volume fraction of coagulating particles is very small so the
likelihood of three-particle encounters is negligible. Simulating coagulation with
higher-volume fractions but considering only two-particle interactions enhanced
numerical efficiency while still reflecting the correct physics for a dilute suspension.

For each particle within the simulation domain, the equation of motion, (3.1), was
integrated numerically using a fifth-order Runge–Kutta algorithm with adaptive
timestep control. The maximum timestep allowed was set at the period of the fastest
Fourier mode, so the Runge–Kutta scheme resolved this mode with a minimum of five
intermediate timesteps. The permissible integration error was established by balancing
the penalty for evaluating (2.4) at many timesteps with the requirement that non-
interacting particles follow the streamlines of the flow. To set the maximum integration
error, we used calculations performed in a steady strain field. Ideally, in the steady
flow, all particles should reach r¯ r¢ since they are created in regions of outward-
going flux. When the integration error was too large, some particles crossed the
streamlines of the flow and returned to the test sphere. A maximum local integration
error equal to 1% of the relative particle separation distance was found to eliminate
streamline crossing.

Particles that reached r¯ r¢ or returned to r¯σ were removed from the simulation.
The average particle flow rate through the system, Q, was calculated as the total
number of particles that reached the outer simulation boundary divided by the total
simulation time. Statistics on Q and the radial pair probability density profile were
obtained at intervals of τ¢, the characteristic time for a particle to travel from r¢ to σ.
In the large total strain limit, τ¢ scales with the Kolmogorov time; however, in the
diffusion limit it can take much longer for particles to reach the test sphere. When
diffusion dominates the system, τ¢ is estimated by relating the radial components of
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the turbulent diffusivity given by (1.7) to half of the time derivative of the mean square
displacement to obtain (Russel et al. 1989) :

1

2

d©r#ª
dt

¯
τ
S
Γη

15
©r#ª. (3.3)

This ODE for the mean square displacement was integrated to estimate the
characteristic time for particles to diffuse from r¯σ to r¯ r¢ as:

τ¢ ¯ 0 1

τ
S
Γη
1 ln 0r#¢σ#

1 . (3.4)

In the computer simulations, characteristic times were estimated for both the small and
large total strain limit, and the longer of the two was used as τ¢ for the simulation.

Each realization of the flow field was simulated until the particle flux at the excluded
volume surface and the outer simulation boundary differed by less than 2% from their
values at the previous τ¢. A simulation typically achieved steady state in less than 20
characteristic times.

At steady state, the net flux of particles entering at the surface of the excluded
volume (r¯σ) is constant and can be written as:

C
"
©u[nª¯

1

πσ#
0 ©u[nª
(u[n)

max

1 . (3.5)

The right-hand side of (3.5) can be interpreted as the product of the maximum particle
flux at the excluded volume surface for the test particle (the maximum particle flux
is one particle created over the surface of the excluded volume per timestep or 1}πσ#)
and the average probability of creating a particle during a timestep. Solving for C

"
yields :

C
"
¯

1

πσ#(u[n)
max

. (3.6)

The coagulation kernel for each realization was calculated as k!¯Q}C
"
.

For each set of system parameters the coagulation rate constant was obtained by
ensemble averaging over independent realizations to achieve the desired level of
accuracy. For the simulations with non-interacting particles, ensemble averaging
continued until the standard deviation of k! was less than 2% of its mean value. The
number of realizations required to achieve good statistics varied strongly with total
strain. For total strains less than 1, as few as 10 realizations were needed, while at total
strains greater than 10, nearly 1000 realizations were required to achieve low statistical
errors. At small total strain, particles experience a rapidly fluctuating flow so that net
particle movement is the result of many uncorrelated normally distributed velocity
gradient fields. In effect, coagulation results are time and also ensemble averaged in this
limit. In contrast, at the large strain limit, the flow field varies slowly and particles
experience a nearly stationary flow; thus, obtaining good statistics depended solely on
ensemble averaging over many realizations.

Along with the parameters summarized in table 1, the outer simulation boundary,
r¢, the maximum volumetric flux at r¢ and the number of Fourier modes, N, were
specified at the beginning of a simulation. Initial computations were conducted to
investigate the effect of the simulation parameters on the reported results. For most
coagulation simulations, we truncated the Fourier series used to represent the
fluctuating velocity gradient field at 300 Fourier modes. The effect of N was evaluated
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F 3. The effect of N on the ensemble average of the turbulent coagulation kernel for
100 realizations of the system. Error bars denote ³ one standard deviation.

by simulating isotropic turbulence (τ
S
Γη ¯ 2.3 and τ

R
Γη ¯ 7.2) while varying the

number of components in the Fourier series from N¯ 25 to N¯ 400. For this
simulation series, the maximum particle flux was held constant and each data point
represented the average of 100 realizations. To facilitate comparison, statistical
fluctuations were reduced by starting each member of the simulation set with the same
random number generator seeds. In this way, velocity gradient field Fourier modes
present in all the simulations were the same and the random numbers sampled when
introducing new particles were identical.

Figure 3 summarizes the results by plotting normalized coagulation rate against the
number of elements in the Fourier series. The error bars denote ³ one standard
deviation. The normalized rate constant, k, monotonically increased towards an
asymptotic value as N was increased. The normalized coagulation rate rose 3.7% when
increasing N from 25 to 200, while k grew only 0.4% when N doubled from 200 to 400.
Statistical error decreased with increasing N, from a coefficient of variation (i.e. the
standard deviation divided by the mean) of 1.4% at N¯ 25 to 1.2% at N¯ 200, and
to 0.9% at N¯ 400. The decrease in statistical uncertainty was presumed to occur
because the p.d.f. of each flow realization was better approximated by a Gaussian
distribution at large N. Given the magnitude of the coefficient of variation for k!, the
marginal improvement gained from increasing N¯ 200 to N¯ 400 was not deemed to
be significant.

The outer simulation limit was chosen to minimize boundary effects. In the limit of
large total strain, curved streamlines that exit and re-enter the simulation control
volume may exist. Particles that exit the simulation boundary cannot re-enter, this
would lead to a higher than expected net flux through the outer simulation boundary.
Simulations conducted in the persistent strain limit for r¢ ranging from 5 to 30 resulted
in computed coagulation rates that were not statistically different. Therefore,
recirculating streamlines broken by the finite simulation boundary were not
consequential when estimating the collision rate for r¢ " 5.

The effect of the finite simulation volume is anticipated to be largest in the limit of
small total strain where the turbulent coagulation process is diffusive. To compute the
boundary effect in the small total strain limit, we solve the radial component of the pair
probability equation with absorbing boundary conditions at the inner and outer
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F 4. The effect of simultaneously varying τ
S
Γη and τ

R
Γη on the normalized turbulent

coagulation rate constant. In these simulations the ratio of total rotation to total strain was fixed at
the value 3.13 obtained from analysis of the DNS data. *, simulation data; +, prediction for
isotropic turbulence (τ

S
Γη ¯ 2.3, τ

R
Γη ¯ 7.2). Unless shown, the ³ one standard deviation error bars

on the simulation results are smaller than the symbols. Asymptotic limits for small total strain (thin
line), large total strain (thick line), and the Saffman & Turner (1956) predication (dashed line) are also
shown. Simulations performed at infinite total strain and rotation are shown with (thick solid line)
and without (_) the effects of rotation. An interpolation of the asymptotes (3.8) shown as the dotted
line closely approximates the simulation data.

simulation boundary (see Brunk et al. 1997). The resulting steady state coagulation
rate constant normalized by the particle radius and Kolmogorov shear rate is :

k!¯
32π

5
τ
S
Γη9 r$¢

r$¢®σ$
: . (3.7)

The term in brackets is the contribution of the finite outer boundary to the calculated
coagulation rate constant. For most simulations discussed below, r¢ ¯ 10. With
r¢ ¯ 10, the coagulation kernel in the diffusive limit increases about 0.8% above that
for an infinite domain. An error of 0.8% is negligible compared to the statistical error
in the calculations and has been ignored in the ensuing analysis.

At intermediate strain the effect of the outer simulation boundary was surmised to
lie between the large and small strain extremes; therefore, we use the magnitude of
boundary effects at the small strain limit to set an appropriate outer simulation
boundary so that the outer boundary had a negligible influence on the numerical
calculations.

3.2. Simulation results

In this section the effect of varying the total strain and rotation on the coagulation rate
is discussed and we contrast the simulation results with the analytical solutions for
large and small total strain limits that are summarized in §1. Additional simulations
investigate the effect of the total rotation on the rate of particle coagulation.

Figure 4 illustrates how the coagulation kernel normalized with the Kolmogorov
shear rate and particle radius changes when τ

S
Γη and τ

R
Γη are varied while

maintaining τ
S
Γη}τ

R
Γη ¯ 0.32, corresponding to isotropic turbulence. The square

symbols represent the simulation data, and unless otherwise shown, the standard
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deviations of the data points are smaller than the symbols. The symbol denoted by the
solid square represents the expected physical state of isotropic turbulence as estimated
from DNS data (τ

S
Γη ¯ 2.3 and τ

R
Γη ¯ 7.2). Also shown are the asymptotic limits of

large (thick solid line) and small (thin solid line) total strain. At small total strain
the pair diffusion formulation (Brunk et al. 1997), given by (1.8), is valid and k!¯
32πτ

S
Γη}5 in normalized form. The simulations reach 95% of the pair diffusion limit

by τ
S
Γη ¯ 0.115 (see figure 4). With increasing total strain, the simulation results

increase until, at a total strain of about 10, the calculated k! levels off and becomes
independent of the applied total strain. The large total strain asymptotic limit was
estimated by running simulations with an infinite total strain and rotation (i.e. the flow
is stationary). At large total strain we find (thick horizontal line on figure 4) that k!¯
9.896³0.0805. By τ

S
Γη ¯ 23 and τ

R
Γη ¯ 72 the simulations are within 98% of the

asymptote.
The Saffman & Turner model prediction in the large strain limit, (1.6), is k!¯ 10.36

in non-dimensional form and is shown as the dashed line on figure 4. It is evident that
this model overestimates the actual coagulation rate in the large strain limit by about
5%. A z-test shows that the difference between the infinite total strain simulation
results and Saffman & Turner model’s predictions is statistically significant (p value
¯ 10−)). In Saffman & Turner’s theoretical analysis the local turbulent velocity field is
represented as a linear irrotational flow, while the simulations described here include
both strain and rotational components of the velocity field. Considering the effects of
strain and rotation separately, one expects the rate of coagulation to be independent
of rotation because a solid body rotation, by itself, does not cause a net flux of particles
towards the test sphere. The simulation results, however, indicate that the effects of
rotation and extension are not superimposable in coagulation. To confirm this
possibility, computer simulations were run at infinite total strain in a purely extensional
flow. The ensemble averaged coagulation rate, shown by the triangle on figure 4, falls
on the Saffman & Turner prediction and a z-test reveals that the simulation prediction
for k! is not statistically different from the Saffman & Turner prediction of 10.36
(p value¯ 0.46). When simulating an irrotational flow, the computed turbulent
coagulation agrees with the Saffman & Turner large total strain asymptote; therefore,
the addition of rotation must decrease the turbulent shear coagulation rate.

The reason that strain and rotation are not superimposable is that the combination
can lead to particle trajectories that leave and later return to the excluded volume
surface and thus contribute no particle flux. Although one can superimpose strain and
rotation when calculating the flow into r¯σ, adding rotation to the pure straining
flow field leads to recirculating trajectories having no net contribution to the
coagulation rate. It follows that the coagulation rate is overstated in an analysis that
neglects rotation. This effect is explored in more detail below.

For isotropic turbulence (τ
S
Γη ¯ 2.3 and τ

R
Γη ¯ 7.2), we calculate a value of k!¯

8.62³0.02 for the normalized coagulation kernel. The Saffman & Turner model
prediction of 10.36 overestimates the true coagulation rate by 20%. Similarly, the
diffusion approximation, (1.8), evaluated at τ

S
Γη ¯ 2.3, estimates the normalized

coagulation rate to be 46.24, approximately 5 times larger than the actual value.
Although the asymptotic limits fail to predict the turbulent coagulation rate for
isotropic turbulence, they can be used to construct an interpolation of the simulation
data. A hyperbolic approximation of the following form is used to interpolate between
the asymptotic solutions:

k!¯
P
"
τ
S
Γη

1Q
"
τ
S
Γη

. (3.8)
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F 5. The normalized coagulation rate constant as a function of the rotation rate correlation
time while keeping τ

S
Γη ¯ 1.15. Error bars are ³ one standard deviation from the mean.

Applying the small and large total strain asymptotic limits to (3.8) leads to P
"
¯ 32π}5

and Q
"
¯ 0.65π. This interpolation, shown as the dotted line in figure 4, closely

approximates the simulation data to within an error of 5%.
Perhaps one of the most interesting aspects of these results is that the addition of

rotation can cause a decrease in the coagulation rate. The effect of rotation has been
previously identified in stationary linear flows (Greene, Hammer & Olbricht 1994;
Zeichner & Schowalter 1977). Zeichner & Schowalter (1977) derive the coagulation
rate in a uniaxial extensional flow (a pure strain field) and compare the results with
coagulation in simple shear (a flow that contains rotation) with and without
interparticle interactions. For the same rate of strain, they find that the k! for simple
shear is about 3.5 times smaller than the k! calculated for uniaxial extension. In the
same vein, Greene et al. (1994) note that linear flows with high vorticity have closed
streamlines and that these closed streamlines can be expected to substantially decrease
the kinematics of particle aggregation. Since the turbulent flow field in the
neighbourhood of a test particle can be conceptualized as an ensemble average overall
possible linear flows, we expect the coagulation rate to be lower than is predicted in the
absence of rotation.

The correlation time for the rotation rate can also be anticipated to influence the
coagulation rate. When the rotation is persistent (i.e. the total rotation is large)
recirculating streamlines present in the flow can be expected to endure and thus the
coagulation rate would be lower. Conversely, when the rotation rate correlation time
is small, the location of streamlines that return to the excluded volume fluctuates and
the effect of the curved streamlines is expected to be mitigated. Numerical simulations
run at τ

S
Γη ¯ 1.15 and various τ

R
Γη illustrate the effects of persistent rotation. The

normalized coagulation rate constants for values of τ
R

ranging from 0 to 720 are shown
in figure 5. Each simulation set started with the same random seeds to facilitate
comparison and enough realizations were computed to achieve a coefficient of
variation less than 2%. The normalized coagulation rate constant, k!, ranged from
9.26³0.16 at τ

R
¯ 0 to 8.50³0.09 at τ

R
¯ 720. Increasing the rotation rate correlation

time decreased the calculated k! to about 92% of its maximum value, in agreement
with expectations.

Pair probability distributions for three simulation conditions and analytical results
for the small total strain limit (diffusion limit) are compared in figure 6. Computed pair
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F 6. Radial concentration profiles calculated for D, (τ
S
Γη, τ

R
Γη)¯ (0.23, 0.72) ; ^, (2.3, 7.2) ;

*, (¢,¢). The solid line represents the analytical prediction valid in the limit of small total strain.

probability profiles are shown for (τ
S
Γη, τ

R
Γη)¯ (0.23, 0.72) (circles), (2.3, 7.2)

(triangles) and (¢,¢) (squares). For pure convection (large total strain), where the
relative velocity is proportional to the separation distance, P(r) is expected to decay in
proportion to 1}r$. Similarly in the small total strain limit we expect a 1}r$ decay since
the turbulent diffusion coefficient is proportional to the separation distance squared.
Hence, it is not surprising that each simulation condition shown in figure 6 has the 1}r$

dependence in the pair probability. The concentration distributions obtained at larger
correlation times have discontinuous drops to zero concentration at the boundaries of
the simulation domain. As the correlation times decrease and the relative particle
motion becomes more diffusive, the concentration profile at the domain boundaries
begins to decrease faster than 1}r$. The profile in the diffusion limit can be found as
a solution to a pair probability equation using the diffusivity given by (1.7) to represent
transport due to turbulence. The pair probability in the small total strain limit has the
following form in the presence of the outer boundary:

P

C#

"

¯
8

r$ 0r$¢®r$

r$¢®81 , (3.9)

where the term in parentheses corrects for the finite size of the computational domain.
Results for τ

S
Γη U 0, τ

R
Γη U 0 are shown as the solid line in figure 6. Effects of the finite

outer boundary became important at about r¯ 7 in the small total strain limit and are
characterized by a more rapid decrease in the concentration relative to the 1}r$ decay.
This behaviour is closely matched by the (τ

S
Γη, τR

Γη)¯ (0.23, 0.72) simulations shown
with the circles.

4. Turbulent coagulation for interacting particles

It is reasonable to expect that particle interactions such as hydrodynamic interactions
and van der Waals forces will affect the turbulent coagulation rate. Hydrodynamic
interactions are the result of viscous drag on the colloidal particles and the lubrication
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forces that amass in the gap between two colliding particles. Without a compensating
attractive interparticle force, hydrodynamic interactions prevent particle collision. At
small particle separations, attraction due to dispersion (i.e. van der Waals) forces can
overcome the viscous resistance to collision and lead to particle contact. The inclusion
of these two forces into the coagulation kernel provides the minimum requirements to
predict experimental results. In this section, we first describe alterations to the
simulation procedure – most notably, the simulations must be performed by a less
efficient forward integration in time. Then the effects of varying the particle size,
relative strength of van der Waals to hydrodynamic forces and the total strain
(rotation) are examined.

4.1. Simulation method

In contrast to the situation without particle interactions, the particle conservation
equation is neither linear nor time reversible when interactions are included. This
means the efficient time-reversed simulation method used in the non-interacting case
(see §3.1) can no longer be employed. Instead, the coagulation rate constant was
calculated from the trajectories of particles released at r¯ r¢ that reached the excluded
volume surface of the test sphere. For large values of r¢, this methodology became very
inefficient as most particles created at the outer simulation boundary left the simulation
domain without interacting with the test particle. The efficiency of the calculation was
improved by decreasing r¢ ; however, this came at the expense of computational
accuracy, as described in §3.1.

In these simulations r¢ ¯ 5 was selected as a compromise between the error resulting
from using a small simulation domain and the inefficiency of the forward time
numerical computations for large simulation domains. As discussed in §3.1, the finite
value of r¢ can affect the calculated value of k! in the diffusion limit. Using (3.7), k!

is expected to be overestimated by as much as 6% as the total strain is decreased.
Simulations of non-interacting particles conducted at several values of τ

S
Γη and τ

R
Γη

were used to develop correlations for the finite box size. Using simulations for non-
interacting particles to assess the effect of r¢ was deemed to be reasonable because
interactions were weak at 5! r¢ ! 10. For each total strain examined, several
realizations at r¢ ¯ 5 and r¢ ¯ 10 were computed using the same random number
seeds to minimize statistical fluctuations. Using r¢ ¯ 5 had less than a 2% effect, with
the impact decreasing with increasing total strain. This result suggests that the smallest
total strain examined in the simulations was larger than that required for the pair
diffusion formulation to become valid. Corrections of the order of 2% were not
considered to be statistically significant, so the simulation results obtained with r¢ ¯ 5
are presented here without correction.

For the case of interacting particles, the computer program generated a unique
realization of the flow field and computed the relative trajectories of the particles using
the full equation of particle motion given by (2.19). At each timestep, a modified form
of (3.2) was used to determine if a particle should be created at r¯ r¢. Instead of
evaluating (3.2) using the hydrodynamic conditions at r¯σ, the local flux was
evaluated at r¯ r¢ and (u[n)

max
E r¢ ©Γ#

""
ª"/#. This methodology for particle creation

assumed that at large separations the particles follow the fluid motion, so the flux
at the outer simulation boundary was accurately represented by (u[n)C

"
. Indeed, at

r¯ 5 the hydrodynamic interactions due to a linear flow have only a 3.5% effect on
the particle radial velocity while van der Waals forces between a newly created particle
and the test sphere are negligible.

The simulation tracked the particles until they either collided with the test sphere or
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left the simulation boundary. Statistics on the average influx of particles through the
excluded volume surface, Q, were collected periodically until steady state was reached.
The program then computed the average coagulation rate for each flow field realization
as before using the relation k¯Q}C

"
where the particle concentration at r¯ r¢, was

given by (3.6) evaluated at r¢ rather than σ.
We anticipated that traversing the lubrication regime, where the gap thickness is

small compared to the particle radius and hydrodynamic forces are significant, would
be the rate limiting step for coagulation. Therefore, it was essential that the simulations
accurately resolved the motion at small particle separations. The maximum local
integration error of 1% set previously also kept the simulation sufficiently accurate in
the lubrication region. When two particles were separated by small gap widths, the
timestep was automatically refined by the error control algorithm to reflect the large
van-der-Waals- and hydrodynamic-induced particle fluxes.

Adding interparticle interactions led to another difficulty, namely at particle contact
both the hydrodynamic interaction and the van der Waals forces diverge. The
singularities in the van der Waals and hydrodynamic interactions were avoided by
choosing a collision radius slightly larger than the particle diameter, r¯σ0.01λ. At
this particle separation, the relative particle velocity induced by the van der Waals
attraction overwhelmed effects of the flow resistance and the particles always collided
in the next timestep.

4.2. Simulation results

Along with the total strain and rotation, two additional parameters govern the
coagulation dynamics in systems with particle interactions, namely: the shear number,
N

S
, describing the relative importance of viscous and van der Waals forces, and N

L
, the

ratio of the particle radius to the London retardation wavelength (i.e. the lengthscale
over which van der Waals attraction decays) (see table 1). In this section we consider
the effects of varying the shear number and particle size for coagulation in isotropic
turbulence. The effect of varying the total strain and rotation on the coagulation rate
constant and the collision efficiency for a single particle size and shear number are also
evaluated.

Simulations in isotropic turbulence (τ
S
Γη ¯ 2.3 and τ

R
Γη ¯ 7.2) were run for N

L
¯

237, 474 and 4740 corresponding to 3.9, 7.6 and 76 µm diameter particles in a flow
characterized by N

S
ranging from 10−" to 10*. Results from these simulations, plotted

as the collision efficiency, α, versus N
S
, are shown in figure 7 along with error bars

denoting ³ one standard deviation. The results indicate that the effect of particle
interactions is significant. For the parameter range investigated, the collision efficiency
is smaller than about 50%, indicating that fewer than 1 out of 2 collisions that occur
in the non-interacting case actually transpire when particle interactions are included in
the analysis. Increasing the particle size adversely affects the collision efficiency because
lubrication forces are more significant for larger particles. For each particle size the
collision efficiency goes through a maximum at a critical N

S
¯N$

S
that depends on the

particle size. Within the error, the data for all three particle sizes collapses onto a single
curve to the right of the maximums.

The maximum in the collision efficiency indicates that there is an optimal
combination of shear rate and particle size that results in the most efficient coagulation.
The interplay of mechanisms that leads to the maximum in the collision efficiency for
each particle size can be understood by considering the relative velocity due to
turbulent shear and the van der Waals force at separations where the van der Waals
force becomes significant. At this gap width, van der Waals attractions have sufficient
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F 7. The collision efficiency, α, as a function of the shear number, N
S
, for various particle sizes

(N
L
). *, a¯ 1.9 µm; D, 3.8 µm; ^, 38 µm. The error bars are ³ one standard deviation. The power

law fit was obtained by non-linear regression of the data to the right of the maximums.

magnitude to draw the particles together. Depending on the particle size, the critical
gap width scales with either the London retardation length or, if the particles are small
enough, the lengthscale at which lubrication forces break down. In the lubrication
regime (i.e. ξi 1), the velocity due to the fluid shear, V

S
is proportional to

Γη σ(1®A(r)) where the lubrication resistance to motion, 1®A(r), is 4.077ξ (Russel et al.
1989). Furthermore, the relative particle velocity due to the van der Waals force scales
in proportion to V

VDW
CA

H
G(r)}12πµξ#, where the lubrication resistance to motion

G(r)¯ 2ξ (Russel et al. 1989). Balancing these two velocities yields :

V
S

V
VDW

CC # ξ*#N
S*, (4.1)

where ξ* is the critical gap width at which van der Waals forces become important and
it is defined as the minimum of 4π}N

L
and 0.1. ξ*¯ 4π}N

L
corresponds to a gap width

of λ and ξ*¯ 0.1 is meant to characterize the gap width at which lubrication forces
break down, 0.1a. N$

S
in (4.1) is the critical shear number that gives the maximum

collision efficiency, and C is a constant found to be about 10 when balancing the
turbulent shear and van der Waals attraction. When C # ξ*#N

S
¯ 1, the turbulent shear

is just strong enough to bring the particles to the gap widths where van der Waals
forces dominate and collision is assured. For C #ξ*#N

S
" 1, particle motion due to

turbulence dominates van der Waals forces, so particles are pushed toward smaller gap
widths before van der Waals forces take over and allow the particles to collide. Since
lubrication resistance is more significant at small gap widths, the collision efficiency
decreases. When N

S
"N$

S
, figure 7 shows that the collision efficiency is nearly

independent of the particle size (i.e. independent of N
L
). This is because the point at

which van der Waals forces take over from the lubrication force and draws the particles
together is much smaller than the retardation length, so λ and hence N

L
become

irrelevant. At the opposite extreme, when C #ξ*#N
S
! 1, turbulent shear is too weak

to transport the particle to gap widths comparable to ξ*. As a result, van der Waals
forces are unable to cause particle collision and the collision efficiency declines.
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F 8. The dependence of the particle size (N
L
) on the critical shear number, N$

S
, at which the

collision efficiency goes through a maximum. The lines are scaling predictions assuming that flux due
to the velocity gradient field and that due to the van der Waals attraction are balanced at the
maximum collision efficiency. The solid line applies to large particles where the characteristic
lengthscale for the van der Waals attractions scales with the London retardation length. The dashed
line applies for small particles where the particle radius provides the correct lengthscale for the van
der Waals attraction.

The region of applicability of the force balance given by (4.1) is illustrated in figure
8. Here the critical N

S
¯N$

S
is plotted against N

L
, where N

L
is the ratio of the particle

size to the London wavelength (see table 1). The critical shear number dependence on
N

L
is shown for the three particle sizes given in figure 7 as well as for particle diameters

of 12.5, 25, 40 and 159 µm. The solid line with C¯ 40 is the prediction for N$
S

valid
when λ characterizes the distance at which van der Waals forces becomes important.
As N

L
decreases, the particle radius rather than the London retardation length is the

appropriate scaling for the van der Waals force. Letting ξ*¯ 0.1 and C¯ 20 gives the
dashed line. The critical shear number prediction given by the solid line works well for
the large particles (i.e. N

L
$ 2000), but it underestimates N$

S
for N

L
# 2000. For the

two smallest particles (σ¯ 3.9 and 7.8 µm) simulated, N$
S

seems to be independent of
N

L
, in agreement with the scaling that uses the particle radius as the characteristic

lengthscale for the van der Waals forces.
The scaling relation developed above to explain the maximum in the collision

efficiency curves is based upon the concept that the van der Waals attraction force acts
to draw particles together once the turbulence has transported them to a critical
separation distance. For shear numbers above the critical value, the turbulence has
sufficient strength to bring the particle pair to separations smaller than λ, beyond
which point, van der Waals attractions inevitably cause a particle collision. It follows
that the collision efficiency could be estimated by calculating the particle flux through
the critical separation distance (ξ¯ ξ*) by using an estimate for the pair probability
based upon hydrodynamically interacting particles. This analysis assumes that the pair
probability is unperturbed by the van der Waals attraction for gap widths larger than
the critical separation, so the effect of van der Waals attractions can be ignored when
estimating the pair probability. For N

S
"N$

S
, the gap width at which the shear and van

der Waals forces balance is less than the London wavelength; therefore, we can restrict
consideration to the non-retarded van der Waals potential and the lubrication region.
Batchelor & Green (1972a, b) derived the pair probability for particles influenced by
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hydrodynamic interactions in a linear flow. In the lubrication regime (ξi 1) they
obtained:

P(ξ )E
0.234C#

"

ξ !.()"[ln(1}ξ )]!.#*
, (4.2)

as before, C#

"
is the pair probability of singlet particles at large particle separations.

Although this result is applicable to linear flow fields with open streamlines, we will use
it to interpret our simulation result for the unsteady turbulent flow.

An estimate for α may be obtained by taking the ratio of the particle flux at ξ* with
hydrodynamic interactions to the particle flux in the absence of particle interactions.
The critical gap width, ξ*, is given by the flux balance used to calculate (4.1). We find
that ξ*CN"/#

S
and, after some manipulation, the following prediction for the collision

efficiency results :

α¯α!
N−!.""

S

[ln(N
S
)]!.#*

, (4.3)

where α! is an order one constant. The solid line in figure 7 is the collision efficiency
predicted using (4.3), where α!¯ 0.6. For the simulation data to the right of the
maximum, N

S
"N#

L
}C #, (4.3) fits the data with r#¯ 94%. By assuming the primary

contribution to the collision efficiency comes from the difference in the pair probability
with and without hydrodynamic interactions, (4.3) is able to predict the variation of α
with the shear number.

For subsequent comparison with other calculations, it is useful to note that for
N

S
" 10 and N

S
"N$

S
, (4.3) behaves like a power law of the form:

α¯ 0.52N−!."'
S

. (4.4)

Since the normalized coagulation kernel is k¯αk!, this implies that the coagulation
rate constant increases with Γ!.)%

η for isotropic turbulence. Comparing this estimate
with values predicted for the asymptotic limits of small and large total strain is
worthwhile. Predictions derived for non-Brownian particles in the small strain limit
indicate that kCΓ!.)*

η (Brunk et al. 1997a). Compared with the moderate total strain
result, coagulation is slightly less retarded by particle interactions in the diffusion limit.
As previously noted, the presence of hydrodynamic drift that brings the particles close
together increases the collision efficiencies in the small strain limit (Brunk et al. 1997a).
To our knowledge, the effects of particle–particle interactions have not been computed
for turbulent flows in the limit of large total strain. Computations of collision
efficiencies in steady linear flows, however, are prevalent (Greene et al. 1994; van de
Ven & Mason 1977; Zeichner & Schowalter 1977; Adler 1981). Recent trajectory
calculations computed for a number of steady linear flows have shown that the stability
factor for flows with more strain than vorticity is nearly insensitive to flow type, except
for flows similar to simple shear (Greene et al. 1994). In the large total strain limit, the
pseudostationary linear flow field around a test particle can be conceptualized as an
ensemble average over all possible linear flows; therefore, the collision efficiency in the
large strain limit is expected to correspond to the average collision efficiency for all
possible steady linear flows. Based upon Greene et al.’s conclusion that collision
efficiency is insensitive to flow type, values of α calculated for simple shear and uniaxial
extension are considered. Zeichner & Schowalter (1977) calculated the stability factors
for uniaxial extension and simple shear for particles influenced by retarded van der
Waals attraction and hydrodynamic interactions. An examination of their compu-
tations reveals that k is proportional to Γ!.((

η for simple shear (using the correction
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F 9. The coagulation rate constant against the total strain for 1.9 µm radius particles and *,
N

S
¯ 1761; E, N

S
¯ 17610. Symbols represent the simulation data and the error bars are ³

one standard deviation from the mean. Results are for a fixed ratio of total rotation to total strain
equal to 3.13.

published in Feke & Schowalter 1983) and Γ!.)*
η for uniaxial extension. In isotropic

turbulence (τ
S
Γη ¯ 2.3 and τ

R
Γη ¯ 7.2), the dependence of k on the shear rate is

intermediate between the steady linear flow cases.
Based on the above analysis, variations of the coagulation rate constant can be

predicted as a function of the total strain when the shear number and particle size are
held constant. In the small total strain limit the asymptotic approximation valid when
the interparticle forces decay in the lubrication regime gives the normalized coagulation
rate constant, kE 0.25(τ

S
Γη)!.""N!.""

S
(Brunk et al. 1997). The estimate for isotropic

turbulence comes from combining k!¯ 8.62 and (4.2) to yield kE 5N!.)%
S

. At large
total strain, k!¯ 9.96 and we obtain kE 5.6N!.((to!.)*

S
, where the collision efficiency

pre-exponential factor given in (4.4) was used to estimate the collision efficiency
coefficient in the large total strain limit. These power laws suggest that the simulated
coagulation rate should remain relatively constant or decrease slightly from moderate
to large total strains. For small total strain the coagulation rate should decrease
because the coagulation rate constant depends on a positive power of the total strain.
The effect of simultaneously varying τ

S
Γη and τ

R
Γη is shown in figure 9. The results

are for 3.8 µm diameter polystyrene particle (N
L
¯ 237) in turbulent flows with shear

rates of 28 s−" (N
S
¯ 1761) and 280 s−" (N

S
¯ 17610). The symbols represent the

simulation data for Γη ¯ 28 s−" (squares), and Γη ¯ 280 s−" (circles). Comparing figures
9 and 4 shows that at small total strain k has the same trend as k! ; an increase in the
normalized coagulation rate constant is seen with increasing total strain up to τ

S
Γη C 1.

Beyond τ
S
Γη C 1 the normalized coagulation rate constant goes through a minimum

at τ
S
Γη C 5. Differences in coagulation rate constant calculations at total strains of 1

and 5 are statistically significant (z-test, p¯ 0.026 when N
S
¯ 1761 and p¯ 0.003 when

N
S
¯ 17610). Within the statistical uncertainty of the data, the normalized rate

constant remains unchanged as the total strain increases above τ
S
Γη C 5; however, the

fact that both data sets show the normalized rate constant increasing again for total
strains above 5 does lend some credence to the trend. The relative drop in the
coagulation rate constant when going from τ

S
Γη of 1 to 5 can be used to estimate the
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from the mean and the ratio of total rotation to total strain is held fixed at 3.13.

Kolmogorov shear rate power law expected in the large total strain limit. In the
absence of interparticle interactions, the normalized rate constants differ slightly
(compare k!¯ 8.62 for isotropic turbulence and k!¯ 9.96 in the large total strain and
large total rotation limit). Assuming the pre-exponential factors for interacting
particles at moderate and large total strain are similar, the two data sets in figure 9
suggest that kCΓ!.()

η at large total strain. This dependence on the shear rate is more
closely aligned to the prediction for simple shear than with uniaxial extension (Feke &
Schowalter 1983). The apparent correspondence between the large total strain limit
and the simple shear rates might have been expected. In both simple shear and
turbulence, the shear rate partitions equally between rotational and extension
components. The importance of rotation has been demonstrated to decrease the
coagulation rate in both the random flow discussed in this manuscript and steady linear
flows (Greene et al. 1994).

The collision efficiency, α¯k}k!, calculated from the data presented in figure 9 is
shown in figure 10. α varies between 16 and 30% for the Γη ¯ 28 s−" computations
(squares) and between 10 and 30% for the Γη ¯ 280 s−" simulations. In both cases, the
small total strain calculations show the largest collision efficiencies. In the small total
strain limit the collision efficiency varies as αE (τ

S
Γη)−"/#N−"/#

S
, which increases as the

total strain decreases. The reason coagulation at small total strain is more efficient may
be explained by considering the relative motion of two particles in the large and small
total strain limits. Neglecting the influence of closed streamlines, at large total strain,
interacting particles have essentially one opportunity to interact and collide before the
persistent flow field sweeps them away from each other. In the diffusive limit, particle
trajectories are random and a pair of particles will have multiple encounters before they
separate. Thus each particle pair is given several chances to collide in the small strain
limit and that increases the probability that the two particles will have a successful
collision.

5. Conclusion

The objectives of this study were threefold: (i) to develop a simulation method, valid
at arbitrary total strain and rotation, that could be used to compute the trajectories of
coagulating particles with radii smaller than the Kolmogorov length of turbulence; (ii)
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to compare the coagulation rate constant for non-interacting particles at arbitrary total
strain to the asymptotic limits of large and small strain derived previously (Saffman &
Turner 1956; Brunk et al. 1997) ; and (iii) to compute the effect of particle interactions
on coagulation in isotropic turbulence.

The relative motion of a particle pair was simulated by solving an equation of
motion valid for particles with diameters smaller than the Kolmogorov lengthscale.
The velocity field was assumed to be a randomly varying, locally linear flow field. We
expanded the velocity gradient as a temporal Fourier series with components
constrained to reproduce the two-time Lagrangian statistics of the fluctuating
turbulent velocity gradient tensor. Coagulation rates were computed for non-
interacting particles and interacting particles affected by van der Waals attraction.

Resulting simulations for the non-interacting particles indicate that both large and
small total strain asymptotes overestimate the actual coagulation rate. A hyperbolic
interpolation of the asymptotic limits reproduces the numerical calculation to within
5% of the actual values ; thus, by knowing the asymptotic forms in the diffusion
(Brunk et al. 1997) and pseudostationary limits, the behaviour in the intermediate
regime can be estimated over the range of strain rate correlation times.

Although our primary emphasis was on coagulation in turbulent flow, we have also
considered the coagulation rate in a range of isotropic Gaussian random flow fields
with correlation times differing from those in turbulence. By varying the flow
correlation time, we show how the kinematics of the flow can influence coagulation and
place this study in the wider context of coagulation in randomly fluctuating flows.
Randomly fluctuating flows may also arise in porous media (Shaqfeh & Koch 1992) or
in chaotic flows (for example, Ottino 1991; Muzzio & Ottino 1988). While these flows
are generally not isotropic, the dependence of coagulation on strain and rotation may
show similar trends.

We found that the total rotation (product of the rotation rate and the rotation rate
correlation time) affects the particle collision rate. We believe this to be the first time
the role of rotation has been systematically investigated. Indeed, we find that Saffman
& Turner’s (1956) analysis, valid in the large total strain limit, neglects rotation and
overpredicts the turbulent coagulation simulations by about 5%. Rotation is shown
here to decrease the observed coagulation rate at large total strain and the absence of
rotation in the Saffman & Turner model explains the discrepancy with these computer
simulations. The presence of rotation leads to recirculating streamlines in the flow.
Since coagulation is limited to open streamlines that can bring particles from the bulk,
the presence of curved streamlines that leave and return to the excluded volume surface
decreases the coagulation rate. Additional investigations into the separate effects of the
strain and rotation rate correlation times show that the coagulation rate decreases as
the rotation rate correlation time increases. This decrease results from persistent
recirculating streamlines that form in the system at large total rotation. At small Γη τ

R
,

rotation does not effect the coagulation rate because there is some probability that as
the velocity field evolves, a particle on a streamline that returns to the excluded volume
surface of the test sphere can escape the looped trajectory before returning to r¯σ.

The consideration of hydrodynamic interactions and retarded van der Waals
attractions leads to significant decreases in the computed coagulation rate constant.
For instance, a 4 µm diameter particle experiencing Γη ¯ 10 s−" has a collision
efficiency, α, of about 20%. In other words, only one collision between interacting
particles occurs for every five that occur in the absence of interparticle interactions. For
a given particle size an optimal shear rate that leads to a maximum coagulation
efficiency exists. At the maximum collision efficiency, the turbulent shear is just strong
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enough to bring the particle pair to gap widths at which van der Waals forces can take
over and cause a collision. For larger shear rates, the turbulence drives the particles to
small gap widths before the van der Waals attraction is sufficient to cause a collision.
Since lubrication forces increase with decreasing gap width, the large shear rates
experience a larger resistance to collision and the transport efficiency of the turbulence
declines. For weak turbulence, the shear is not strong enough to transport particles to
gap widths where van der Waals forces are significant and therefore the collision
efficiency is lower. A simple balance based on the turbulent particle flux and the flux
due to the van der Waals attractive forces predicts the location of the maximum
collision efficiency.

Simulations performed at a constant shear number (i.e. ratio of viscous to van der
Waals forces) and various values of the total strain show that order one total strains
have the highest coagulation rate. Two competing effects lead to this result : the
transport rate of the flow field and the probability that two interacting particles will
collide before the flow field transports them away from each other. The rate of
transport toward the test sphere increases with total strain as the transport mechanism
changes from diffusive transport at small total strain to transport in a pseudosteady
flow field at large total strain. The higher rates of transport found at large total strains
increase the coagulation rate constant because more particles are available for
coagulation. Working against this process is the efficiency of the particle encounters.
In simplest terms, at large total strain, approaching particles have essentially one
opportunity for successful collision before the persistent flow field carries them away
from each other. In contrast, in the diffusive limit of small total strain, particle
positions fluctuate randomly so that approaching particles will undergo many close
encounters before they either collide or are transported away from each other. The
many opportunities for collision available in the diffusion limit increase the probability
that the particles will actually collide, so the efficiency of the process is higher than at
large total strain. The synergistic combination of relatively efficient particle transport
and multiple particle encounters that occurs for total strains of order one explains why
flows with moderate total strain have the highest coagulation rate.

There are several recent studies of particle collision rates in turbulent flow fields
obtained from direct numerical simulations (Sundaram & Collins 1997; Wang et al.
998; Zhou et al. 1998). In each case, the particles were assumed not to influence the
turbulent flow. Sundaram & Collins (1997) and Zhou et al. (1998) considered particles
with finite Stokes numbers, while Wang et al. (1998) considered inertialess particles.
Many of the results of Wang et al. and Zhou et al. are for frozen turbulence although
a few calculations with temporally evolving turbulence were also included. The
primary advantage of DNS is that it provides an exact representation of the turbulent
field. However, it is difficult to provide a realistic description of a dilute suspension of
colloidal-sized interacting particles within the context of DNS. The colloidal and
hydrodynamic interparticle interactions occur on very short timescales and lengthscales
which are difficult to resolve at the same time as one is resolving the larger scales. For
this reason, all of the studies mentioned above neglected particle interactions.

It is also difficult to simulate particles with diameters that are much smaller than the
Kolmogorov scale in DNS. The collision rate decreases with decreasing particle
diameter and it is difficult to obtain a statistically significant number of collisions for
σi η. Sundaram & Collins (1997) found that σ must be at least as small as 0.18η
to obtain the small-particle behaviour for particles with a constant Stokes number,
St¯ 1. Wang et al.’s (1998) simulations used a surprisingly large particle diameter :
σ" 0.8η.
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The need to obtain a sufficiently large number of collisions to obtain statistically
significant results led the DNS investigators to use moderate values of the volume
fraction, typically φ¯O(0.01). As noted in §1, the volume fraction must be quite small
to avoid concentration fluctuations from developing because the mixing time becomes
comparable with the time for the volume fraction to evolve owing to coagulation.
Written in terms of the Taylor-scale Reynolds number, we require φiR−$/#

λ . Since Rλ

is typically 25–55 in the simulations, one would require φi 0.01 to avoid concentration
fluctuations over the integral scales of the turbulence.

Sundaram & Collins (1997) assumed elastic interparticle collisions upon contact.
This collision mechanism does not introduce concentration fluctuations because
particles are conserved by the collision. However, as noted by the authors, elastic
collisions give physically unrealistic behaviour at small Stokes numbers especially in
the absence of hydrodynamic interactions where two particles might collide repeatedly.

Wang et al. (1998) removed pairs of particles from the simulation whenever they
came into contact to model the coagulation event. They thereby either obtained a
number density that decreased with time as the simulation progressed (their scheme 3)
or added particles at random throughout the flow to keep the number density constant
(their scheme 4). Wang et al. (1998) noted that number density variations developed
during the flow because particles were removed more rapidly from regions of high
dissipation. They also noted that schemes 3 and 4 yielded different apparent
coagulation rates. These results are not surprising since the volume fractions φ¯ 0.002
to 0.12 used in these simulations do not satisfy the criterion for a well-mixed
suspension. Thus, these simulations cannot be directly compared with our calculations
or those of Saffman & Turner (1956) without a model for the macroscale mixing
phenomena. The clearest comparison of DNS with theory would be obtained if it were
possible to simulate smaller particle volume fractions where mixing effects would be
absent. In addition, it would be desirable to vary the volume fraction and particle
radius independently.

In §3, we noted that even in the limit of large total strain, the coagulation rate is
smaller than that predicted by Saffman & Turner (1956) by about 5% owing to the
effects of rotation. The rotational component of the flow leads to some trajectories that
leave the excluded volume region and then return again. These should not be counted
toward the coagulation rate, since the concentration of singlets is zero at r¯σ.
Allowing for the finite-strain amplitude of a real turbulent flow, we found the
coagulation rate to be 20% lower than Saffman & Turner (1956). Wang et al. (1998)
performed some simulations (their scheme 1) in which the particle pairs were allowed
to overlap and were not removed from the calculation. These simulations reproduced
the results of Saffman & Turner (1956) for the coagulation rate. These simulations
counted as coagulation events in which overlapping particle pairs passed out of and
then back into the excluded volume region. Thus, scheme 1 of Wang et al. (1988) did
not detect the decreased coagulation rate owing to closed trajectories.

These first attempts at simulating turbulent coagulation in DNS illustrate the need
to recognize, control and evaluate the effects of particle size, volume fraction, flow
evolution timescales and interparticle interactions in future computations. The DNS
studies discussed above provide evidence that some of these effects can be significant;
however, systematic studies are needed to understand each effect independently. Our
work has documented the effects of flow evolution time and interparticle forces on rates
of aggregation in turbulence.

The simulations conducted in this research are an important step in improving the
understanding of colloidal aggregation in turbulence. What remains is to obtain
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accurate experimental measurements of turbulent coagulation for comparison to the
model predictions. As a next phase in this research turbulent coagulation rates for
monodisperse particles will be measured under conditions of isotropic turbulence
created by an oscillating grid reactor (Brunk et al. 1998).

This work was sponsored by the Office of Naval Research (Grant no. N00014-94-1-
0896) and the US EPA (Grant no. R81-9761-010). Additional funding was provided by
a DOD Air Force fellowship. The authors would also like to thank Professor Erhard
Jirka for his helpful discussions during the development of this work. The computer
simulations with interparticle interactions were conducted using the resources of the
Cornell Theory Center.

Appendix. The second-order statistics of Γ
ij
(t)

We assume an isotropic fluctuating velocity gradient characterized by separate strain
and rotation rate correlation times. Mean flow is ignored so that the expectation of
Γ

ij
(t) is zero. The velocity gradient tensor is separated into its symmetric and

antisymmetric parts so that the strain and rotation rates are decoupled along with their
timescales :

Γ
ij
(t)¯S

ij
(t)R

ij
(t), (A 1)

where S
ij
(t) is the strain rate tensor and R

ij
(t) is the rotation rate tensor.

In the following analysis all times and velocity gradients have been scaled with their
Kolmogorov values. Assuming stationary turbulence, the two-time correlation for
Γ

ij
(t) is written as:

©Γ
ik
(0)Γ

jl
(t)ª¯©S

ik
(0)S

jl
(t)ª©R

ik
(0)R

il
(t)ª, (A 2)

where the cross-correlation terms, such as ©S
ik
(0)R

jl
(t)ª, are zero owing to isotropy;

however, correlations would occur for the third moments if we considered non-
Gaussian velocity gradient fields. Angle brackets, © ª, denote ensemble averaging over
the sample space of the random variable.

Velocity gradient autocorrelation data obtained from DNS (Girimaji & Pope 1990)
and the properties of isotropic fourth-order tensors are used to deduce relationships for
the strain and rotation rate autocorrelation functions. The strain correlation function
decays exponentially with a characteristic decay time, τ

S
, of 2.3τη (Girimaji & Pope

1990) :

©S
ik
(0)S

jl
(t)ª¯S

ikjl
exp0®t

τ
S

1 , (A 3)

where the fourth-order tensor S
ikjl

is the covariance of the strain rate. Nonlinear
regression of Girimaji & Pope’s simulation data (1990) shows that the exponential
form given in (A 3) fits the data with an r#¯ 99.6%. S

ikjl
is written as a fourth-order

isotropic tensor that depends on three scalar coefficients. The numerical coefficients are
obtained by applying symmetry, S

ikjl
¯S

kijl
, continuity, S

iijl
¯S

ikjj
¯ 0, and

dissipation rate, S
ijij

¯ 0.5. The final form for the strain rate covariance is :

S
ikjl

¯ "

#!
[δ

ij
δ
kl
δ

il
δ
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®#

$
δ
ik

δ
jl
]. (A 4)

The rotation rate correlation function is obtained using a similar analysis to yield:

©R
ik
(0)R

jl
(t)ª¯R

ikjl
exp0®t

τ
R

1 , (A 5)
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where R
ikjl

¯ "

"#
[δ

ij
δ
kl
®δ

il
δ
jk
], (A 6)

and τ
R

is the rotation rate correlation time with a value estimated to be about 7.2τη

(Girimaji & Pope 1990). The exponential form for the autocorrelation function fits
the DNS data with r#¯ 95%. The form of (A 6) is set by applying antisymmetry
R

ikjl
¯®R

kijl
, continuity, R

iijl
¯R

ikjj
¯ 0, and dissipation rate, R

ijij
¯ 0.5. The last

statement comes from the evolution equation for the mean square vorticity fluctuations
and is valid for large Reynolds numbers (Tennekes & Lumley 1972).

The complete expression for the autocorrelation function of the velocity gradient
tensor is :

©Γ
ik
(0)Γ
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τ
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ikjl
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τ
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